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Abstract: Background: In the context of the so-called unified airway theory, chronic rhinosinusitis
(CRS) and asthma may coexist. The inflammation underlying these conditions can be studied through
the aid of biomarkers. Main body: We described the main biological mediators that have been studied
in pediatric CRS and asthma, and, according to the available literature, we reported their potential
role in the diagnosis and management of these conditions. As for CRS, we discussed the studies
that investigated nasal nitric oxide (nNO), pendrin, and periostin. As for asthma, we discussed the
role of fractional exhaled nitric oxide (feNO), the role of periostin, and that of biological mediators
measured in exhaled breath condensate (EBC) and exhaled air (volatile organic compounds, VOCs).
Conclusion: Among non-invasive biomarkers, nNO seems the most informative in CRS and feNO in
asthma. Other biological mediators seem promising, but further studies are needed before they can
be applied in clinical practice.
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1. Introduction

The possible coexistence of rhinosinusitis and asthma is well known [1,2], in the context of the
so-called unified airway theory, which describes the upper and lower airways as a single functional
unit [3–5]. Moreover, the upper and lower respiratory tracts have common histological structures,
including the basement membrane, lamina propria, ciliary epithelium, glands, and goblet cells [6].

Nowadays, more and more interest is directed to the study of noninvasive tests, which could help
assess the presence and nature of airway inflammation in childhood chronic rhinosinusitis (CRS) and
asthma, in order to learn more about the underlying pathological pathways of these complex diseases,
and potentially guiding the development of a personalized medicine.

The better studied noninvasive marker of airway inflammation is nitric oxide (NO). NO is a free
radical gas produced from L-arginine mainly by two enzymes: constitutive nitric oxide synthase (NOS),
which constantly generates low concentrations of NO, and inducible NOS (iNOS), also called type 2
NOS, which is present in airway epithelial cells, where it is upregulated by proinflammatory cytokines,
such as tumor necrosis factor and interleukin-1β, and by lipopolysaccharides of Gram-negative
bacteria [7–9].

NO is released throughout the airways, and both the NO released from the upper respiratory
tract (nasal NO, nNO) and the lower respiratory tract (fractional exhaled nitric oxide, feNO) can
be measured.

Nasal NO can be measured with a non-invasive method based on the nasal aspiration, at a constant
flow rate, from one naris with gas entrained via the other naris (transnasal flow in series) during velum
closure, in order to prevent leak of nasal NO via the posterior velopharyngeal aperture and to reduce
contamination of nasal gas with lower airway air [10,11]. Till now, no other recommended methods
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have been described, even if this method requires patient collaboration, and alternatives have been
studied for children who cannot manage velum closure [12–15].

The standardized method to measure feNO is the single breath on-line (SBOL) method, which is
non-invasive, rapid, repeatable, and reproducible. The subject has to inhale through the mouth
to total lung capacity (TLC), then exhaling during velum closure (against a positive pressure of
5–20 cmH2O) [11,16]. This technique is well standardized in children who are able to cooperate,
while until now, no standardized methods have been recommended in young or uncooperative
children [17–19]. In these children, the most appropriate method is the tidal breathing offline method,
which is carried out collecting exhaled air in an appropriate reservoir for later analysis [20–22]. One limit
of this method is the lack of control in the expiratory flow, being feNO values highly flow-dependent.
To overcome this problem, fast-response chemiluminescence analyzers and flow control devices have
been developed [23], as well as mathematical algorithms, which try to obtain, from tidal breathing
feNO values, the corresponding single breath flow values [24]. The second limit of the tidal breathing
offline method is the contamination from nose-derived air, which contains higher NO levels that may
affect the measurements of feNO; for this reason, the use of facemasks with a septum that separates the
air from upper and lower airways has been suggested [22].

Here, we discussed the possible role of NO as a biomarker in chronic rhinosinusitis (CRS) and
asthma in children. Moreover, we described the main other biological mediators that have been
evaluated in these conditions. In particular, the possible role of periostin and pendrin was reported,
and the potential of molecules measured in exhaled air (volatile organic compounds, VOCs) and
exhaled breath condensate was discussed. Figure 1 summarizes these biomarkers, highlighting the
current applicability in clinical practice.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 2 of 15 

 

recommended methods have been described, even if this method requires patient collaboration, and 
alternatives have been studied for children who cannot manage velum closure [12–15]. 

The standardized method to measure feNO is the single breath on-line (SBOL) method, which 
is non-invasive, rapid, repeatable, and reproducible. The subject has to inhale through the mouth to 
total lung capacity (TLC), then exhaling during velum closure (against a positive pressure of 5–20 
cmH2O) [11,16]. This technique is well standardized in children who are able to cooperate, while until 
now, no standardized methods have been recommended in young or uncooperative children [17–19]. 
In these children, the most appropriate method is the tidal breathing offline method, which is carried 
out collecting exhaled air in an appropriate reservoir for later analysis [20–22]. One limit of this 
method is the lack of control in the expiratory flow, being feNO values highly flow-dependent. To 
overcome this problem, fast-response chemiluminescence analyzers and flow control devices have 
been developed [23], as well as mathematical algorithms, which try to obtain, from tidal breathing 
feNO values, the corresponding single breath flow values [24]. The second limit of the tidal breathing 
offline method is the contamination from nose-derived air, which contains higher NO levels that may 
affect the measurements of feNO; for this reason, the use of facemasks with a septum that separates 
the air from upper and lower airways has been suggested [22].  

Here, we discussed the possible role of NO as a biomarker in chronic rhinosinusitis (CRS) and 
asthma in children. Moreover, we described the main other biological mediators that have been 
evaluated in these conditions. In particular, the possible role of periostin and pendrin was reported, 
and the potential of molecules measured in exhaled air (volatile organic compounds, VOCs) and 
exhaled breath condensate was discussed. Figure 1 summarizes these biomarkers, highlighting the 
current applicability in clinical practice. 

 
Figure 1. Biological mediators in pediatric rhinosinusitis and asthma. Green: applicable to clinical 
practice; Red: not applicable to clinical practice yet. nNo: nasal nitric oxide; feNO: fractional exhaled 
nitric oxide; EBC: exhaled breath condensate; VOCs: volatile organic compounds. 

2. Chronic Rhinosinusitis 

Even if the diagnosis of CRS in children is based on symptoms (nasal obstruction, nasal 
discharge, facial pain/pressure, and reduced/lost smell) persisting for more than 12 weeks with 
associated endoscopic or radiographic findings [25], a number of biomarkers has been studied for 
their possible role in diagnosis, work-up, and management of this condition [2]. 

2.1. Nitric Oxide 

NO has been extensively studied in CRS, mainly because upper airways represent the main 
source of respiratory NO [26,27], and, additionally, paranasal sinuses are the main production site 
[28]. In the upper airways, NO has several functions: a specific host defense against infective agents 
(bacteria, viruses, and fungi) [29], modulator of cilia motility [30], a regulator of nasal airflow 

Figure 1. Biological mediators in pediatric rhinosinusitis and asthma. Green: applicable to clinical
practice; Red: not applicable to clinical practice yet. nNo: nasal nitric oxide; feNO: fractional exhaled
nitric oxide; EBC: exhaled breath condensate; VOCs: volatile organic compounds.

2. Chronic Rhinosinusitis

Even if the diagnosis of CRS in children is based on symptoms (nasal obstruction, nasal discharge,
facial pain/pressure, and reduced/lost smell) persisting for more than 12 weeks with associated
endoscopic or radiographic findings [25], a number of biomarkers has been studied for their possible
role in diagnosis, work-up, and management of this condition [2].

2.1. Nitric Oxide

NO has been extensively studied in CRS, mainly because upper airways represent the main source
of respiratory NO [26,27], and, additionally, paranasal sinuses are the main production site [28]. In the
upper airways, NO has several functions: a specific host defense against infective agents (bacteria,
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viruses, and fungi) [29], modulator of cilia motility [30], a regulator of nasal airflow humidification
and warming [31], airborne messenger between higher and lower respiratory tracts [32,33].

The role of nasal NO in sinusitis has been evaluated in some studies. The first study describing
variations of nasal NO levels during acute sinusitis was published in 1997 by Baraldi et al. [34].
The authors showed that children with acute maxillary sinusitis had a marked reduction in nasal NO
concentrations, and nNO returned to normal levels after antibiotic therapy. This finding could be
caused by mechanical obstruction of the draining ostia and by negative pressure within the sinuses,
resulting in a decreased passage of NO from sinuses to the nasal lumen [34]. In keeping with this,
in adult patients, it was demonstrated that despite patients with CRS with nasal polyps had high level
of NOS2 in nasal epithelium, because of the inflammation of nasal and paranasal cavities, they exhibited
lower nNO compared to patients with uncomplicated allergic rhinitis; moreover, the higher was the
extent of polyposis and the lower were the levels of nNO [35]. This was probably due to the osteomeatal
complex obstruction, which was associated with the inability of NO produced in the sinuses to reach
the nasal cavity [35]. Likewise, another study confirmed, in patients with polyposis (which lead to
blockade of the osteomeatal complex), a negative correlation between nNO and the degree of sinus
disease [36]. In keeping with this, in a patient with CRS and polyposis, nNO diminished with the
increase of sinus opacification observed with CT scans [37]. Even if these studies were mostly performed
in adults (Table 1 summarizes these studies), they pointed out that inflammation of sino-nasal mucosa,
especially if associated with polyps, prevents NO to flow from sinuses to the nasal lumen, so that
reduced nNO levels are measured in these conditions.

Noteworthy, the reduction of nasal NO may lead to a vicious circle, increasing the risk of recurrent
infections in these subjects, since NO plays a role in host airway defenses against exogenous agents [38].

In conclusion, although the clinical relevance of finding reduced nNO levels in CRS is limited [8,39],
this biomarker can be useful to monitor sinus ostium block during both post-medical and postsurgery
follow-up in subjects affected by bilateral nasal polyposis [8].

Table 1. List of studies that evaluated nasal nitric oxide (nNO) in rhinosinusitis.

Study Aims Population Results (mean ± SD) Conclusions

[34]

To evaluate nNO in
children with acute
maxillary sinusitis

before and after
treatment with

antibiotic therapy

16 children (4–13 years)
with acute maxillary

sinusitis; 16 age- and sex
-matched healthy
control subjects

(1) nNO = 70 ± 8.7 ppb sinusitis before
antibiotic therapy;

(2) nNO = 220 ± 15 ppb sinusitis after
antibiotic therapy
(amoxicillin/clavulanate);

(3) nNO = 245 ± 15 ppb healthy
control subjects

During acute maxillary
sinusitis, nNO is
decreased; nNO

returns to normal after
antibiotic therapy

[37]

To examine if nNO
is affected by

paranasal sinus
inflammatory

diseases

20 patients with
nonallergic nasal

polyposis (age 48 ± 3
years); 42 control

subjects (age 42 ± 3
years)

(1) nNO = 150 ± 20 ppb in patients with
nasal nonallergic polyposis;

(2) nNO = 223 ± 6 ppb in controls

nNO in patients with
nasal polyposis is

decreased compared to
controls, and it

depends on the degree
of obstruction of the

paranasal sinuses

[35]

To evaluate nNO in
patients with nasal

polyposis
compared with

allergic rhinitis and
to analyze the
effect of polyp

treatment on nNO

44 patients with rhinitis
without polyps (age = 39
± 13.6 years) and 38 with
polyps (age = 45.6 ± 4.5

years); 20 normal
controls (age = 36.9 ±

11.6 years); 23 patients
with polyposis pre- and

post-treatment (age =
48.8 ± 4.2 years)

(1) nNO = 740.9 ± 148.1 ppb in
normal controls

(2) nNO = 659.8 ± 304.8 ppb in
allergic rhinitis

(3) nNO is significantly lower in patients
with polyps than allergic rhinitis
without polyps (Kruskal–Wallis,
p = 0.0001, x2 = 37.6, d.f. = 4)

(4) Successful treatment, with reduction
in polyp volume, associated with a
rise in NO levels (p = 0.042)

nNO levels are low in
nasal polyps. A rise in

nNO is seen with
successful polyp

treatment
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Table 1. Cont.

Study Aims Population Results (mean ± SD) Conclusions

[36]

To study the effect
of CRS therapy on

nNO and to see
whether nNO

changes correlate
with other

assessments.

90 patients (mean age 43
± 13 years) with CRS

who still had
troublesome symptoms
after initial therapy with

dexarhinaspray and
nasal douching

(1) Baseline nNO correlate with CT
scores (p < 0.001)

(2) The mean nNO levels for the three
grades of severity at CT scan are
grade1 (less severe) 537 ± 202, grade 2
362 ± 188, and grade 3 165 ± 151 ppb.

(3) The percentage rise in nNO correlates
with changes in symptom scores
(p < 0.001), saccharin clearance time
(p < 0.001), endoscopic changes
(p < 0.001), polyp grades (p < 0.05 at
6 months, p < 0.01 at 12 months),
and surgical scores (p < 0.01).

nNO provides a
valuable non-invasive
objective measure of

the response of CRS to
therapy

ppb: parts per billion; CRS: chronic rhinosinusitis; nNO: nasal nitric oxide.

Even if feNO is considered a marker of lower airway eosinophilic inflammation, in the context
of the previously described unified airway theory, recent studies have analyzed this marker in CRS,
with variable results. Kobayashi et al. showed that patients with eosinophilic CRS without asthma
did not have high feNO levels, while feNO levels were elevated in well-controlled asthmatic patients
with eosinophilic CRS [40]. On the other hand, Zhang et al. showed that 29% of the patients with
CRS with nasal polys, without pulmonary disease, had increased feNO [41], and Jeong et al. showed
that 30 non-asthmatic, non-atopic patients with CRS with nasal polyps had a significantly higher
feNO than healthy controls [42]. Similarly, Takeno et al. analyzed 33 patients with CRS with nasal
polyps and found high feNO (defined as feNO >25 ppb) in 22 (66%), 8 (36%) of which with no history
of asthma [43]. Furthermore, recent studies demonstrated that in patients with eosinophilic CRS,
feNO levels correlated with the severity of the CT findings [40,44], and a reduction of this biomarker
had been described after functional endoscopic sinus surgery [44].

In conclusion, the available data on feNO levels in CRS is not unanimous, and for the time being,
there are no clear recommendations for its clinical use.

2.2. Pendrin and Periostin

Pendrin is an ion exchanger involved in inflammation and mucus production in patients with
CRS, as well as in asthmatic patients [45,46]. Its role in mucus production is not only due to a direct
effect but also mediated by the recruitment of inflammatory cells [46]. Pendrin has also been shown to
regulate epithelial air-surface liquid levels and composition [45,47].

It has been demonstrated that pendrin is overexpressed in the sinonasal tissue, including epithelial
cells and submucosal gland cells, in patients with CRS and nasal polyps, suggesting a pathogenetic
role for this molecule [48]. The increased levels of pendrin might contribute to chronic inflammatory
response, mucus production, and decreased mucociliary clearance [49].

Periostin is an extracellular matrix protein, a highly inducible product of IL-4 or IL-13, which are
signature cytokines of the Th2-type immune response [50,51]. Moreover, periostin plays an important
role as a regulator of fibrosis and collagen deposition [52]. Recently, the analysis of sinonasal mucosal
biopsies, obtained from CRS patients, showed that periostin was associated with the presence
of basement membrane thickening, fibrosis, and tissue eosinophilia and might identify patients
undergoing remodeling changes [53]. In addition, its overproduction in the nasal mucosa of patients
with CRS has been suggested to contribute to polyp formation [48,54,55]. Xu et al. demonstrated that
periostin and VEGF (vascular endothelial growth factor) were higher in eosinophilic nasal polyps
than in non-eosinophilic nasal polyps and control tissue, and in vitro VEGF was upregulated by
periostin, suggesting that periostin might play an important role in the development of eosinophilic
nasal polyps [56]. It has been shown that serum periostin in combination with blood eosinophils and
basophils count has the potential to discriminate eosinophilic nasal polyps and non-eosinophilic nasal
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polyps [57] and, in combination with IgE and Staphylococcal enterotoxin (SE)-IgE, may be useful to
identify nasal polyps with moderate and severe type 2 inflammation [58].

In conclusion, the analysis of pendrin and periostin can provide some insights into the pathogenetic
mechanisms involved in CRS. Nonetheless, such measurements are still limited to research, and they
do not have a role in clinical practice yet.

3. Asthma

In the past two decades, many studies in the field of asthma focused on the investigation
of biomarkers relevant for the diagnosis, phenotyping, or treatment of the disease [59–61]. Here,
we discussed the most widely studied biomarkers, focusing on those measured non-invasively,
since this aspect is particularly important when dealing with children

3.1. Fractional Concentration of Exhaled Nitric Oxide

Four years after the first report on the presence of nitric oxide in exhaled human breath [62],
an increase in its levels has been reported in children with asthma [63], in particular during asthma
exacerbation with a rapid decline after oral steroid therapy [64]. Subsequently, several studies analyzed
feNO in pediatric asthma, demonstrating its role as a marker of eosinophilic airway inflammation,
since it is correlated with eosinophil counts in blood and induced sputum or bronchoalveolar lavage
fluid, with serum eosinophil cationic protein and with IgE levels [9,65–67]. Recently, it has been
described a fair diagnostic accuracy of feNO for identifying asthmatic patients [68] and, as recently
suggested by Pavord et al., for identifying the treatable trait of eosinophilic asthma (e.g., to identify
patients who are likely to benefit from inhaled corticosteroids) [61]. On the other hand, being feNO
increased also in other atopic conditions, other authors suggested that low feNO levels predict a
non-eosinophilic asthma phenotype better than high levels can predict an eosinophilic one [69,70].

As far as it concerns young wheezing children, several studies demonstrated that feNO levels
were higher in those with recurrent wheezing compared to healthy controls [71–73], in those with
frequent wheezing with high asthma predictive index (API) compared to low API [74,75], and in
those with persistent wheezing compared to transient wheezing [76]. Therefore, it has been suggested
that feNO could help phenotype preschool-age children with recurrent wheezing, contributing to the
identification of those with early-onset asthma. In detail, it has been demonstrated that in high-risk
preschool children (at a mean age of 22 months), high feNO levels were associated with increased
risk for school-age asthma [77], and in preschool children with symptoms suggestive of asthma,
both feNO and specific IgE to inhalant allergens were associated with asthma at 8 years [78]. In addition,
in longitudinal cohort studies in infants and toddlers (<2 years) with recurrent wheezing, feNO values
higher than or equal to 30 ppb had a high predictive value for persistent wheezing at 3 years of age [79],
and an increase in feNO was associated with a decrease in lung function 6 months later [80].

The predictive value of feNO for the development of asthma was analyzed even in healthy school
children, showing that children in the highest feNO quartile had an increased risk of developing
asthma compared to those with the lowest quartile [81]. Also, a study carried out in children (mean age
8.4 years, follow-up 5 years), with allergic rhinitis (without asthma) and feNO > 35 ppb at baseline,
demonstrated a higher risk of new-onset asthma and a higher decrease in lung function, suggesting
less lung growth in children with high feNO values [82].

feNO is also a marker of inhaled corticosteroids responsiveness, as well as a possible marker of
treatment compliance since several studies demonstrated a drop in its levels in response to steroid
therapy [71,83,84]. A recent systematic review and meta-analysis showed that adjusting treatment,
according to feNO levels, reduced the likelihood of asthma exacerbations at the expense of increased
inhaled corticosteroids doses [85].

In conclusion, feNO has been studied in particular for its potential role in eosinophilic asthma
detection, early asthma identification, and corticosteroid responsiveness prediction. These possible
clinical applications are well summarized in the available international guidelines (Table 2):
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• The National Institute for Health and Care Excellence (NICE, 2017) recommends measuring feNO
(described as positive test when more than or equal to 35 ppb) in children (aged 5 to 16 years)
with symptoms suggestive of asthma, if there is diagnostic uncertainty after initial assessment
(e.g., normal spirometry or obstructive spirometry with a negative bronchodilator reversibility
test) [86]. Furthermore, using feNO to monitor asthma control is not routinely recommended [86].

• The 2019 British Thoracic Society guidelines recommend to use feNO (if available) to find evidence
of eosinophilic inflammation (regard a feNO level of 35 ppb or more as a positive test), keeping in
mind that a positive test increases the probability of asthma, but a negative test does not exclude
asthma [87]. Also, except in specialist asthma clinics, the routine use of feNO testing to monitor
asthma in children is not recommended [87].

• The 2019 Global Initiative of Asthma (GINA) guidelines report that feNO is not useful for ruling
in or ruling out a diagnosis of asthma nor for guiding asthma treatment in the general population.
Among alternative strategies for adjusting asthma treatment in children, GINA guidelines
report that feNO-guided treatment significantly reduces exacerbation rates compared with
guidelines-based treatment (Evidence A). Furthermore, feNO seems to be a useful adjunct in
diagnosing asthma in pre-school children with recurrent wheezing, in whom an elevated feNO
(recorded 4 weeks from any URTI) predicts asthma at school age [88].

Table 2. How guidelines consider the use of fractional exhaled nitric oxide (feNO) as a biomarker of
asthma ().

Guideline Cut-off Value How to Use feNO in Clinical Practice

[86] feNO positive if more
than or equal to 35 ppb

• in children (aged 5 to 16 years) with symptoms suggestive of
asthma, if there is diagnostic uncertainty after the
initial assessment

• not routinely recommended to monitor asthma control

[87] feNO positive if more
than or equal to 35 ppb

• (if available) to find evidence of eosinophilic inflammation
• a positive test increases the probability of asthma, but a

negative test does not exclude asthma
• the routine use of feNO testing to monitor asthma in children

is not recommended, except in specialist asthma clinics

[88] No clear cut-off value

• feNO is not useful for ruling in or ruling out a diagnosis
of asthma

• feNO is not useful for guiding asthma treatment in the general
population, even if among alternative strategies for adjusting
asthma treatment in children; feNO-guided treatment
significantly reduces exacerbation rates compared with
guidelines-based treatment (Evidence A)

feNO = fractional exhaled nitric oxide; ppb = parts per billion.

3.2. Periostin

As previously described, periostin is an extracellular matrix protein upregulated by classic type
2 cytokines IL-4 and IL-13 [50,51], which was described in several reports as a useful biomarker
of T2-inflammation in adult asthmatic patients [89–91]. Moreover, in asthmatic patients, periostin
plays an important role as a regulator of fibrosis, airway remodeling, collagen deposition, and mucus
production from goblet cells [50,52,92,93].

Despite an increased periostin level described in children with asthma [94,95], periostin is unlikely
to be a useful biomarker of type 2 inflammation in children, mainly because its levels increase due to
bone growth and this may overlap with local production within the airways [93,96].

In conclusion, as in CRS, also in asthma, the study of periostin is currently limited to the field
of research.
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3.3. Exhaled Breath Condensate (EBC)

Among non-invasive methods for studying airway inflammation, exhaled breath condensate
(EBC) is one of the most attractive. It is a biofluid collected during tidal breathing by cooling exhaled
air by contact with a cold surface or condenser [83,97]. The condensate contains unstable volatile and
semi- and non-volatile molecules, and its composition is thought to mirror that of the airway lining
fluid; EBC is considered a promising biofluid, which allows the noninvasive study of pulmonary
biochemical and inflammatory processes [83,98–100]. Many studies have investigated the possible role
of EBC analysis in asthma, using both targeted (a measurement of single analytes) and untargeted
(omic techniques) approaches.

Through a targeted approach, many single mediators related to inflammation and oxidative stress
have been searched in EBC. Among them, the most relevant are:

• pH, which tended to be lower in children with severe or acute asthma but not in mild and stable
disease [101–103];

• Leukotrienes (LT): LTB4, a potent inflammatory mediator and a chemoattractant for neutrophils,
was increased in the EBC of asthmatic children, being twice as high in steroid-naïve patients with
asthma as in healthy subjects [104,105]; Cysteinyl leukotrienes (LTC4, LTD4, and LTE4), powerful
constrictors and proinflammatory mediators, were increased in particular in unstable or severe
asthma [106–108];

• 8-isoprostane, hydrogen peroxide (H2O2), and other markers of oxidative stress, which were
increased in asthma [107,109]; in particular, H2O2 correlated with disease severity, disease control,
and response to steroid treatment [110,111];

• 3-nitrotyrosine (3-NT) and other nitric oxide metabolites that were more concentrated in the EBC
of asthmatic children than in healthy controls [102,112,113].

Since no single biomarker can fully describe the pathogenic processes underlying complex chronic
diseases, “-omic approaches” have been applied to study the overall biochemical-metabolic composition
of exhaled breath condensate, with the potential for identifying analyte profiles characteristic of
specific conditions [98,99,114,115]. Both proteomics and metabolomics have been applied to EBC in
asthma research.

Proteomics is defined as the study of the complete assessment of proteins in a biological
sample in order to identify potential biomarkers associated with a specific disease [114]; therefore,
detecting distinct protein biomarkers in different pathologies may assist in disease diagnosis,
monitoring, treatment, and prognosis [116]. The complexity of proteomics, due to alternative splicing,
posttranscriptional, and translational modifications and the enormous dynamic range of protein
concentrations in biological samples, makes this research field one of the most interesting in the last
years, even if still an object of speculation [117]. As far as it concerns healthy subjects, several studies
explored EBC in order to characterize their protein composition (proteome maps), which could be
useful for future clinical studies dedicated to the discovery of novel protein biomarkers for pulmonary
diseases [118,119]. In keeping with this, Bloemen et al. found a specific pattern of expressed peptides
in asthmatic children [120].

Metabolomics, without any priori hypothesis, studies the metabolite composition (or metabolome)
of a biological sample, using a spectroscopic technique (usually NMR spectroscopy and mass
spectrometry). It is nowadays considered the “-omic” science that comes closer to phenotype expression
because the metabolome is the result of both genetic influences and environmental stimuli [121,122].
Therefore, metabolomics provides a snapshot of the overall physiology of the host and its response to
the environment [121]. In the EBC of asthmatic children, the metabolomic analysis was applied to
characterize the airway biochemical fingerprints, enabling the discrimination of children with and
without asthma [123]. Furthermore, in children with asthma, EBC metabolomic analysis distinguished
different asthma phenotypes and enabled the identification of a specific profile associated with severe
asthma [124].
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In conclusion, the analysis of EBC, both using targeted and untargeted approaches,
seems promising for the study of physio-pathological mechanisms underlying asthma. Nonetheless,
despite two comprehensive Task Force reports of the European Respiratory Society (ERS) and American
Thoracic Society (ATS) published in 2005 [100] and in 2017 [83], EBC-analysis is not yet routinely
applicable in clinical setting, mainly, because of the poor reproducibility of biomarkers and the absence
of large surveys for determination of reference-normal values [125]. In keeping with this, a recent
review published by Bannier et al. showed that studies on EBC research in pediatric asthma, performed
between 2013 and 2018, are hardly comparable due to large heterogeneity in study populations,
study methods, EBC collection methodologies, EBC biomarkers, analytical methods, and limits of
detection [126].

3.4. Volatile Organic Compounds (VOCs)

In the last decades, exhaled breath has been studied using a metabolomic approach in the so-called
“breathome”, that is the fingerprint of volatile organic compounds (VOCs) [127]. Airway VOCs are
organic chemicals (e.g., a chemical compound that contains carbon) originated from the upper and
lower airways and also from the capillary bed near the alveoli [128]. In order to collect VOCs from
exhaled breath, different methodological approaches have been studied, taking care to exclude organic
compounds from ambient air, to apply the correct breathing maneuvers, and to use the most suitable
sampling materials [128].

Two different techniques have been used to study exhaled VOC profiles: (a) gas chromatography
with mass spectrometry, a quantitative method that identifies individual components, and (b) the
electronic Nose (e-Nose), a qualitative method that obtains probabilistic discrimination between
biomarker profiles [129,130].

In pediatric asthma, different VOCs profiles have been described in children with and without
asthma [131–135]. The analysis of exhaled VOCs may contribute to asthma diagnosis [136] and the
discrimination of asthmatic children from those with transient wheezing symptoms [137]. Also,
several studies demonstrated the potential role of VOCs analysis in the prediction of asthma
exacerbation [138,139] and in the characterization of children with persistently controlled and
uncontrolled asthma [140]. On the contrary, recently, Bannier et al. reported that Aeonose (an easy-to-use
hand-held eNOse) used in children ≥6 years had high feasibility (>98% successful measurements),
but a modest diagnostic accuracy for the discrimination between asthma and healthy controls [141].

In conclusion, VOCs analysis is an attractive non-invasive method that could contribute to the
identification of asthmatic subjects, even if larger studies are needed, in order to standardize the
procedures and validate the technique of sampling and analysis.

4. Conclusions

Several non-invasive biomarkers have been investigated to study inflammation in CRS and
asthma. As far as it concerns CRS, there is clear evidence that in subjects with bilateral nasal polyposis,
nNO is reduced because of sinus ostium block; other biomarkers have been studied in this condition
(in particular, pendrin and periostin), but, nowadays, they have no clear role in clinical practice.

In pediatric asthma, feNO levels may have a role in the characterization of Th2-mediated
eosinophilic inflammation in the early identification of asthma in pre-school children with recurrent
wheezing and the prediction of steroid responsiveness. Nonetheless, the use of feNO measurements in
clinical practice is still limited, as specified by the current international guidelines.

Eventually, even if several studies investigated the possible role of EBC and VOCs analysis
in pediatric asthma, they are not ready for clinical practice yet, and larger studies are needed to
standardize the procedures of sampling and analysis.
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